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Abstract

A novel analytic approach is presented to study the population of excitatory and inhibitory spiking neurons in this paper. The evo-
lution in time of the population dynamic equation is determined by a partial differential equation. A new function is proposed to char-
acterize the population of excitatory and inhibitory spiking neurons, which is different from the population density function discussed by
most researchers. And a novel evolution equation, which is a nonhomogeneous parabolic type equation, is derived. From this, the sta-
tionary solution and the firing rate of the stationary states are given. Last, by the Fourier transform, the time dependent solution is also
obtained. This method can be used to analyze the various dynamic behaviors of neuronal populations.
© 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

The cerebral cortex is composed of a large number of neu-
rons that are connected to an intricate network. In all small
volumes of cortex, thousands of spikes are emitted at each
millisecond. Each cubic millimeter of cortical tissue contains
about 10° neurons. This impressive number also suggests
that a description of neuronal dynamics in terms of a popu-
lation activity is more appropriate than a description on the
single-neuron level. Knight and his collaborators introduced
a novel approach to the modeling and simulation of the
dynamics of interacting populations of neurons [1-3]. In this
approach, the dynamics of individual neurons, which are
described by a state vector v, determines the evolution of a
density function as p(v, ¢) gives the probability that a neuron
in the population isin state v. The density function character-
izes the behavior of the whole population. In its simplest
form, the state vector is one dimensional and can be applied
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to leaky-integrate-and-fire (LIF) neurons. The evolution
equation in this approach is a partial differential integral
(PDE) equation, which describes the evolution of p(v,¢)
under the influence of neuronal dynamics and a synaptic
input. So far, most approaches to solve this PDE numerically
are based on finite difference schemes [3-6]. Sirovich [7] dis-
cussed the solutions of some solvable cases. Brunel [8]devel-
oped an analytical method to the sparsely connected
networks of excitatory and inhibitory spiking neurons via
the Fokker—Planck equation. Especially, there are many
researchers engaging in research of the neuronal population
model in recent years [9-14]. We present a novel view to the
population evolution equation. A new population evolution
equation is derived, and its analytical solution is given to
analyze the firing rate in this paper.

2. The basic model
The population model on which this study is based

derives from neuronal dynamics described based on the
simple integrate-and-fire equation:

1002-0071/$ - see front matter © 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.
doi:10.1016/j.pnsc.2009.01.007



1160 W. Huang et al. | Progress in Natural Science 19 (2009) 11591163

dv
T = —n(0) + 500 (1)

where the frans-membrane potential, v(0 < v < 1), has
been normalized so that v = 0 marks the rest state, and
v =1 the threshold for firing. When the latter is achieved
v is reset to zero. A, a frequency, is the leakage rate and
s(t), also having the dimensions of frequency, is the nor-
malized current due to synaptic arrivals at the neuron.
Under the statistical approach one considers a popula-
tion of N neurons, each following Eq. (1), so that
Np(v,t)dv specifies the probable number of neurons, at
time ¢, in the range of states (v, v + dv). p(v,?), the proba-
bility density, may be shown to be governed by
0 0 0 Y
W=y HO) =g (i) +a) [ o)

o) [ P& 50— 1) = £ (—inp)

+ () (p(v = he,t) = p(v, 1)) + 0e(1) (p(V + i, 1)
—p(v,1)) +0(v)r(t — 1) (2)

where 4, and #4; are the membrane voltage jump due to an
excitatory synapse spike arrival and an inhibitory synapse
spike arrival, respectively, © is the refractory period,
o.(t) and o;(¢) are the external excitatory neuronal input
rate of spikes and the external inhibitory neuronal input
rate of spikes, J is the neuronal flux in the state space
and r(¢) is the firing rate of the population and is given
by the flux of neurons leaving at the threshold value of
the membrane potential

) = J(v = 1,8) = 0u(0) / p(a 3)

Since the number of neurons is preserved, the flux of neu-
rons leaving the interval must equal that entering at the
resting state

J(pat)vzo :J(pat_ ‘C)vzl (4)
From this it follows that probability is conserved,
1 t
/ (v, 6)dv + / H({)de = 1 (5)
0 t—1
The second boundary condition is that
p(v=1,6)=0 (6)
Eq. (2) is to be solved given initial data
p(v,t=0) =q(v) ()

This model may be extended to membrane dynamics, a ri-
cher set of reversal potentials and stochastic effects, as well
as more complicated neuronal models [3,4,6].

3. Analytical studying of a modified model
Sometimes we are more interested in firing rate »(¢) than

p(v,t). If we solved the firing rate »(z) by Egs. (2) and (3),
the computational process would be discommodious and

complicated. In order to overcome the difficulties, we use
the following transformation first:

P(v,t)=["_p(V,t)dv
{P(v, 0)=0() = [, 4(+)dv
Integrating Eq. (2) from 0 to v on two sides, and substitut-
ing Eq. (8) into Eq. (2) derives
oP i oP

(8)

o e T () (P(v — heyt) — P(v, 1)) + a;() (P(v + Ry, 1)
v
—P(v,t)) + HW)r(t —1) 9)
where v € [0,1], and H(v) is the Heaviside step function:
0 v<O
H®v) = 10
m={] 2% (10)
The firing rate r(¢) is
r(t) = a.()[P(1,2) — P(1 — h,,1)] (11)
From the above, moreover, we can get the conditions
P(0,7) ="
( ) ae() t (12)
P(l,y=1— [ _r()d/
and
P(v,t) =0 v<0
P(v,t) 2 0 0<v<l (13)
P(v,t)=P(1,1) v>1

Generally, for the following quasi-linear first order partial
differential equations:

{ W00 _ gy 2000 — _p(r)p(v, ) + g(v, 1) 14
¢(v,0) = O(v)

we can get its analytical solution:

{ 0.0 = (e 4 [jglaer 0 pperrs
i

Then, from (9), we have

P(v,t) = Q(ve*)e ™1
F I3 [P ) 4 ()P
+h17 t) (t/ — ‘L’)] )=l )dt

fo a.(t

)+ a;(¢))de

(16)
Eq. (16) gives an iterative approach to solve P(v,¢) for us.
The value of current state P(v, ) in each fixed position (v, ?)
is determined by the integrate value of previous states.

From the point of view of signal processing, this can be re-
garded as a spatio-temporal recursion filter.

3.1. Approximate approach

However, the above method does not give an immediate
analytical solution, and is inconvenient for us to apply.
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When 4, — 0 and #; — 0, let us consider the Taylor

expansion

P(v— he,t) = P(v,t) — )_|_h3 azaf ) -

P(v—hi,t) = P(v,1) — Iy a‘“’g;*’) + 1 2P0
But when v < h,, P(v — h,,t), and v > 1 — h;, P(v + h;, 1) =
P(1,¢), the influence of P(v — k,,t) and P(v + h;,t) vanish,
then Eq. (17) cannot be wused for estimating
P(v—h,t) and P(v+ h,, t). We adopt

P(v — he,t) = P(v, 1) — h, 2204 4 h" EP—”) + h(v,?)

P(v+ hyyt) = P(v, 1) + > +’g & ’gf"ﬁ + K (1)

h(v,1) = —Hhe<v>P<07r> e - (1)

H(v,t)=—H(—1+h)P(1,1)

=—Hv—1+h)(1- [ _r(t)dr)
H,(v) = H(v) = H(v — h,)

where A(v,t) and h(v,7) can be compensate function.
Substituting (18) into (9) yields:

L L=y () F2D 4 py () L5+ £ (v,1)

f(v )= H( —h)r(t—7)—H(v—1+h)a()(1— [ _r(¢)dt')
(1) = () heo(1)
polr) =150+ 150

(19)

3.2. Stationary solution

First, let us consider the stationary states. In this case,
o.(t) =032, ai(t) = a?,apﬂ" =0,P(v,t) = Py(v),r(t) = ry,

then, from (19) we get

” 42
(Av + ) S0l 4 )0 SFol)

So(v) = H(v = he)ro —
W = hie? — h.a®

) dPO

+folv) =

(vflJrhi) a¥(1 — ry)

(20)

0 hZO h20

Hy =
The solution of Eq. (20) is
Py(v) =— [y exp( (=) )fo fo(vr exp(
+Cy [y exp( ” —5) )dvl +C,

)dvl dv,

Q
=
=
>3

SH
I

>

where C, C, are constants and they satisfy

— mqo‘ S

Po(0)
Po(l): — Try (22)
Po(1) = Po(1 = he) =%

Finally, we obtain

(15 —m36? )09

o= ny i+ 8400 (mymy —myny+ny ) +160 00 (mamy —many)
Cr = i+ ity (ma + matay) (23)
C, = ;—?,
where
:fol exp (_("22;5’)2) (;o exp( 53 )dvldv2
my = fll—h exp ( (‘;azb) ) exp ( )dvldvz

= i exp (=E55) [y O = 1 hexp (M52 dvidve
= I xp (=) 7 = 1 hexp (52 dvar,
= exp( P )dV1
m=[ exp( g )dw

(24)

From Eq. (23) we know that the firing rate , increases with
the increase in external excitatory input rate ¢° and the in-
crease in inhibitory excitatory input rate ¢'. When

6% — oo and ¢ — oo, we have

0 0Y,,. 0
(13 —m30?)mya?
_ 0 0.0

miny 4+t 1) + 16, 60 (many

_m3n2) i

lim 0 00
oo MUy +12fty + G (mMam)
rO =
0 0 0
(15 —msa})ny0) _
“m 0 0.0 — =
112 + T ) 4107 60 (myny — msny)

(25)

lim o 0
oo My +12ply + 00 (Mo

3.3. Time dependent solution

Next, we discuss how to solve Eq. (19). It can be
expressed as a nonhomogeneous parabolic type equation

< ivap—ﬂl()ap‘t+ﬂ2()agv;t+f(" 1, ve(01)
(v 0) = Q( )
P0,0) =", P(Le) =1 [ r()d?
(26)

This is a mixed problem that possesses initial value and
boundary value simultaneously. It is a challenge for us to
solve. We adopt the following assumption:

Y(V,t) = P(V,t)[H(v) _H(V _ 1)] _ {g(",t), : ;[[(;),11]]
(27)

and

P0,1) = apé(vh fn_ 0, P(l1)= aPélv, 0_, o8)

From Egs. (27) and (28) we can get
{”é:?”—“’é:” [H (v) — H(v—1)] + [P(0,0)3(v) — P(1,0)0(v—1)]
Y0 _EPUD [ (y) — H(v—1)] + [P(0,0)8 (v) — P(1,0)8 (v—1)]
(29)
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Substituting (29) into (26) yields:

{EYE(};[ v ath):'ul(t)aP\t (t)@Ptt (V,t)
Y(v,0) = Yo(v) = QO)[H(v) — H(v — 1)]
(30)
where
Fvyt)y=[Hv—h,)—H(v—1D]r(t—1)
—[Hv—=14+h)—H(-1)]
xo;(1)(1 ftttr(t’)dt’) +g(v,1)
gv,t) = = ()[P(0,0)(v) — P(L,0)6(v — 1)] — 1y (1)
x[P(0,2)d'(v) — P(1,6)8' (v — 1)]
(31)

Applying the Fourier transform to (30) yields
S 4 as T = (=24 (0)js — pa(0)57) Y (5,0) + F (s,0)

Y (5,0) = Yo(s)
(32)

Solving the quasi-linear first order partial differential equa-
tions obtains

Y(s,1) = Yols
n(s,t) = —it — jse ™ [\ (1)e* dl —

7/1t) 7(s,t) _’_ftﬁ Sefi(tft') t)eq (s,6)=n(s,t") ) d?
2 —2,1z f() uz(t)e”“’dl
(33)
The inversion of the Fourier transform of Y(s,1), ie.
Y(v,t) = F'[Y(s,¢)] is
Y(V,f) — Yo(ve/ll) *Lfl [en(s.z)] +ﬁ;F(VeZ(z—1’)7t/) *Lfl [611(S'l)7’7(s"/):|dt,
n(s,t) = —at— jse ™ [ (1) dl — s2e™ [y (¢)e?H di
(34)
where * is the convolution operator. Due to
F*l[eﬂ(s‘t')] — F*l[ef/lt+jscl(t)] % F*l[efszcz(t)]
=e MU+ (2),1) (35)
FHe"s0-160] = =400 (v 4 ¢, (£) — e (1), ¢, 1)

where
— FllgFa0)] = __1 4;2(0
U(v,t) =F'[e ] il
2
U,tt)= F! [e—sz(cz(f)—cz(t'))] = 1 oHer D -er )

an(ca(1)—ca(1))
t —)tf 'u Aldl

o(t) = e fo (D dl
(36)
Eq. (34) changes to
Y(v,t) = e Yo(ve") x U(v +ci(2), 1)
+ / t e COF(ve! 0 )« U' (v + (1)
- c?(t’), t,¢)dr (37)

This is a significant result. If we assume that Y,(v,?),
Y, (v,t) and Y,(v,t) satisfy the following equations:

Y (v.t) 6)’1 Y (vt)
L — Ay =5 = F(v,1) (38)
YI(V,O) = Yo( )
and
ayza(tu _ ( i—i—dc‘ () +dc7(t)> azxgvgv,r)’ ve (0,1)
Y5(v,0) = 6(v) (39)
Y,(0,¢)) =0, Y (l,6)=0
dv,(0, dv,(1,
=0, =0
and
(v c c 2y v,
6Y2q(t,l):< l—f-dl +d2 )a}ézv(Zt)v VE(O,I)
Yy(0,0) = e ¥ U+ er(t), 1) (40)
Y5(0, ): Y5(1,1) =0
v (0, av’,(1,)
dr = 0’ iit =0
then

Yi(v,0) = Yo((1 = V)e) + [y F (vt~ 1) de
Ya(v,t) = e U v+ ci(1),1) (41)
Yy(v,8) = e U (v +¢1(t) — 1 (F), 1, 1)

These show that Y(v,¢) is given by the combination of the
convolution of Y (v,#), Y,(v,¢) and Y5(v,7). From (12) and
(37), we can get the firing rate r(¢)

r)=a(t)[Y(1,1)—
—ao)| [ e HHol(1=¥)e) = Tof(1-h=v)e)

dv+// Hi=t)

—F((1=h—v)e = )] x U' (v +ci(t) —er(),t,¢)dv df

Y(1—h,t)]

x (V4e(t F((1=v)e 7)

(42)

Egs. (12), (31) and (42) give the relation between the firing
rate r(¢) and time ¢.

4. Summary

In this paper we have presented a novel analytical
approach to study the population of excitatory and inhib-
itory spiking neurons. For computing the firing rate expe-
diently, we adopt a transformation to the density
function and obtain the state function. We derive a new
evolution equation from the original equation which is a
nonhomogeneous parabolic type equation, and give the
approach that deduces its analytical solution. We propose
a method to solve the approximative solution, which
derives a nonhomogeneous parabolic type equation and
gets a relation of the computing firing rate. Furthermore,
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we study the stationary solution and give the firing rate of
the stationary states.
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